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Abstract-Presented in this paper is a general theory describing the consolidation of a porous elastic soil. The
formulation allows for the occurrence of finite geometry changes and finite elastic strains during the
consolidation process, The governing equations have been cast in a rate form and the laws which determine
deformation and pore fluid flow, i.e, Hooke's law and Darcy's law, are presented in a frame indifferent manner.
A numerical technique is described that provides an approximate solution to the governing equations. The
theory and the solution technique are illustrated by several examples of practical interest.

I. INTRODUCTION

Predicting the behaviour of a foundation resting on a saturated clay is an important problem in
foundation engineering.

Saturated clay consists of two phases, a compressible solid phase (the soil skeleton) and a
liquid phase (the water filling the pores). When the foundation is first loaded the soil skeleton
tends to compress and so excess pore pressures develop and the foundation undergoes an initial
settlement. The pore water then tends to flow from regions of higher excess pore pressure to
regions of lower excess pore pressure. As this dissipation of the excess pore pressure occurs the
foundation settles and ultimately reaches a final settlement.

The process of consolidation described above was first investigated by Terzaghi [1] for
one-dimensional conditions. Subsequently, Biot[2,3] extended Terzaghi's theory to three
dimensional situations. However, exact solutions to problems involving the consolidation of a
soil mass are not easy to obtain. This is not surprising when it is considered that the equations of
consolidation combine the complexities of an elastic problem with those of a diffusion process.
For this reason exact solutions have been found only to problems in which the body under
consideration has a particularly simple geometry and is subjected to simple boundary conditions
(see, for example, Mandel [4], McNamee and Gibson [5, 6], Gibson and McNamee [7] and Gibson,
Schiffman and Pu[8]). In most practical problems it is necessary to employ numerical techniques
to integrate the equations of Biot's theory. For the case of a soil with an elastic skeleton
numerical approaches have been developed by various authors [9-13].

In the formulations of Terzaghi and Biot the authors restricted their attention to conditions of
infinitesimal strain and thus the theory they developed is only strictly applicable to situations in
which the geometry of the problem varies only slightly during loading. Gibson, England and
Hussey[14] recognised this limitation and developed a one-dimensional theory which accounted
for such finite deformation. More recently, Mesri and Rokhsar[15] have included some account
for finite strain in their numerical treatment of one-dimensional consolidation. Smiles and
Poulos [16] examined the one-dimensional problem with no restriction on the magnitude of strain,
and an allowance for the variation in flow parameters with variation in void ratio, in an endeavor
to explain the phenomenon of secondary consolidation.

In this paper the theory of finite consolidation is generalised from one to three-dimensional
conditions. The basic equations are approximated by the finite element method and several
example problems are solved.

2. GOVERNING EQUATIONS

There have been several investigations of the finite deformation of soil [17-19]. These
treatments have regarded the soil as a single phase material and have ignored the interaction
between the solid and fluid phase and, therefore, can only be used to predict settlements under
either totally drained or totally undrained conditions.

In this paper the methods developed in Ref. [17] will be extended to obtain an incremental
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analysis of both the soil skeleton and the pore water while taking into account the coupling of the
two processes.

2.1 Effective stress-strain behaviour
Suppose that at some time to a consolidating soil occupies a region in space Vobounded by a

surface So. Part of this surface SOT is subject to specified applied tractions TOi while on the
complementary portion SOD the displacements are assumed to be zero. Portion of this surface SOP

is free to drain, the complementary portion SOl is assumed to be impermeablet as shown in Fig. 1.
At some later time t the body will have moved to a region in space V bounded by a surface S. The
traction specified, displacement specified, permeable and impermeable portions of S will be
denoted ST, SD, Sp and Sl respectively.

Using a Cartesian reference frame, consider a specified material point of the skeleton which
occupies a position ai(i = 1,2,3) at some time to; at a later time t this point will have moved to the
position Xi, where

Xi = ai + Ui, i = 1,2,3. (I)

The quantity Ui represents the displacement of the solid particle and is measured relative to the
position of the body at time to.

In an Eulerian description the instantaneous rate of deformation may be described by the
velocity gradient

aV.i-=e,,+wi'
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uXj
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Fig. I. Deformation mapping.

tThe extension to more complicated boundaIY conditions both elastic and hydraulic is straightforwaId and will not be
given here.



where

A theory of finite elastic consolidation 469

(3)

is the velocity of the soil skeleton.
The symmetric deformation rate tensor eij and the skew-symmetric spin tensor Wlj are given as

(4)

(5)

In any constitutive law that expresses the stress rate as a function of the deformation rate, the
definition of stress rate employed should strictly be frame indifferent [20, 21]. In this paper the
stress rate used is that due to Jaumann[22] which is defined by

A •

all = all - alkWki - ajkWkl (6)

where ail denotes the Cauchy total stress field at time t with tensile stresses reckoned positive.
The superior dot is used to represent material differentiation with respect to time and unless
otherwise stated repeated indices will imply summation.

A general linear relationship between the objective stress rate and the deformation rate (Le.
the effective stress-strain law) can be written in the form

(7)

where p is the pore pressure at XI at time t with compressive pore pressures positive; 8il is the
Kronecker delta; and Di1kl are the elastic constants for the drained behaviour of the soil which
may of course depend upon both position and time. By the use of a piecewise linearity of the
"constants" D11kl any combination of experimentally observed and intuitively assumed skeleton
behaviour is readily incorporated into the numerical technique described later.

An alternative form of eqn (7) useful in subsequent developments is

(8)

2.2 Fluid flow behaviour
It will be assumed that the movement of the ftuid through the soil is governed by Darcy's law

but, as noted by Gibson et al. [14], some care is necessary in formulating this in a consistent form.
Thus if the ftuid has an actual velocity Vji, then the superficial velocity of the ftuid relative to the
skeleton is a(vji - VSi), where a is the soil porosity in the neighbourhood of Xi at time t. This
superficial velocity is proportional to the hydraulic gradient, Le.

(9)

where h = (PIYt) +xkbk; Yt, is the unit weight of pore ftuid; kih are the permeability coefficients
which may depend upon position and time; and bi, are the components of a vector indicating the
direction of gravity.

Some care is also necessary in the definition of the permeability coefficients and this matter is
discussed in the appendix.

2.3 Mass flow for solid and fluid phases
Consider a physical element of the soil skeleton which has unit weight and porosity (y" a) at



470 1. P. CARTER et al.

time t. Conservation of mass leads to the equation

-! {E(1-a)} +8E (1- a) = 0
dt g g

(10)

where g is the acceleration due to gravity, and 8 = eji is the rate of volume strain.
If it is supposed that the material of the soil skeleton is much less compressible than the soil

consisting of both the solid and fluid phases, then Ys is constant, so that

8=&/(1-a). (11)

Similarly, considering the mass flow of the fluid into and out of a specified physical element,
with velocity V/i and unit weight Yf at time t then it is found that

d {Yf} Yf a {Yf }- -a +8-a=-- -a(v/i-vsd.
dt g g aXi g

Again assuming that the fluid is much less compressible than the two phase soil, then

&+a8=--aa {a(v/i-vs;}}.
Xi

(12)

(13)

Equations (11) and (13) may be combined to obtain an expression for the overall volume
behaviour of the soil

a
8 = --a {a(v/i - vsd}.

Xi
(14)

2.4 Virtual work expressions
The total stress distribution within the soil must always satisfy the conditions of equilibrium,

so that at time t

(15)

where Fi = {ys (1 - a) +Y~} bi is the body force vector.
For our purposes a more convenient form of eqn (15) incorporating the stress boundary

conditions is the equation of virtual work

(16a)

where the stress field /jij is in equilibrium with the tractions Ti and body forces Po, while the virtual
velocities dVsi are compatible with the virtual deformation rates deij and the velocity boundary
conditions on So.

When the rate law (8) is introduced into eqn (16a) it becomes

(16b)

where Ri = f V dVsiPo d V +f Sr dvsiTi dS - f v deijUOij d V and UOij, po are the total stress and pore
pressure distributions within Vo at time to.

Similarly the volume behaviour, eqn (14), can be replaced by the integral formulation
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which on introduction of Darcy's law (9) becomes

where virtual pore pressure changes are consistent with the boundary conditions on Sp.

471

(l7b)

3. APPROXIMATE SOLUTION

Equations (16) and (17) are exact expressions governing the finite consolidation behaviour of an
elastic soil. It is not, in general, possible to find rigorous solutions to these equations; however,
numerical solutions may be found using the finite element technique to perform the spatial
integrations and a marching process to perform the time integration.

In developing the numerical formulation it is convenient to rewrite several of the equations
developed in the previous section in the following alternative notation.

Adopting the Cartesian reference frame (x, y, z), let the field quantities u" v,;, VJi be the
components of vectors u, v" Vi respectively, where

uT
= (u.. u" uz )

vs
T = (vsx , Vsy, vsz )

vl = (Vi.. Viy, Viz),

For convenience we have replaced subscripts i = 1, 2, 3 by x, y, z respectively. Since ali is
symmetric we define (T a vector of stress components as

Utilising the symmetry and skew symmetry of elj and Wij we define vectors of deformation rate e

and w as
e= av,

w =ev,

l
a/ax 0 0 a/ay 0 a/az]

with aT = 0 a/ay 0 a/ax a/az 0
o 0 a/az 0 a/ay atax

and

[

a/ay
~= 0

- a/az

- a/ax
a/az
o

- ~/aY]
a/ax

For a soil with an elastic skeleton the rate law becomes

where
U =Pd-P1I (18)

axyP= I
DI

dT =(eT,w T )

11 T = (l, 1, 1, 0, 0, 0)

o
-Uxy

- (Tzx

o
I 0 - ayz-,1- ----T-
,i(ayy-axx ) ian

1 10: -iazx i(azz-ayy )

111
: layz -iaXY i(axx-azz )
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and D is the matrix of elastic constants for the drained behaviour of the soil skeleton.
Darcy's law takes the form

where K denotes the matrix of permeability coefficients corresponding to klj.
The governing eqns (16) and (17) when expressed in this notation are

Lde T {{ Pd dt - (p - po)",} d V = R

and

where

R:;;:: f dv,TFdv+l dv/TdS- f deTuodV
Jv Sr Jv

(19)

(20)

(21)

with T, F, Uo corresponding to r i, Fi and (J'Oij respectively.
The variational problem described by eqns (20) and (21) can be solved approximately as

follows:
(i) Suppose that the deforming body is represented by a number of finite elements and that

the continuous displacement and pore pressure fields can be adequately described by their values
at the connecting nodes 1, 2, ... , N and let

~BT = (u/, u/, , UN
T

):;;:: BT (t) - BT (to)

qT :;;:: (Ph P2, ,PN):;;:: qT (t).

The subscripts in the above definitions refer to values at a particular node and note that
q = q(t) represents the nodal pore pressure at time t while B = B(t) represents the total nodal
displacement in the time interval (0, t).

(ii) Suppose that the continuous fields v. and p can be adequately approximated in terms of
nodal values, so that

(22a)

(22b)

where the form of A and a depend upon the particular type of element used and will in general
depend upon its current position.

(iii) In terms of the nodal quantities, the velocity and pore pressure gradients may be written

d=B8

e=C8

(J:;;:: NTB

Vp=Eq

Vh :;;:: Eq/oyf +i8

where

B= (;)A, C = aA, NT = ",TC

ET = (aafiJx, iJafay, iJafaz)

and i g is the vector containing the terms bi.

(23a)

(23b)

(23c)

(23d)

(23e)
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(iv) Equations (20) and (21) can now be approximated by

dAT L e{E PBA dt} dV -dATe ~q = dAT m

- dqTLA - dqT eIlq = dqT n

where

~q = q(t) - q(to)

LT=LNaTdV

ell = 1.- r ETKTE dV
1t Jv

m= r (ATF-CTuo)dV+ r ATTdS
Jv JST

n = LETKTig dV.
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(24a)

(24b)

Equations (24a, b) apply for any arbitrary dAT and dqT, hence the set of approximating
equations becomes

LCT{E PBA dt} dV - LT~q = m

- L6 - eIlq = n.

(25a)

(25b)

3.1 Numerical method
Equations (25) are a set of differential-integral equations and they may be integrated from to to

t obtain the following approximation

where

[ Q -l,T] (~6) (m )
- E - ~~tc) ~q = ii~t +<i>qo~t

(26)

The superior bar denotes that the quantity is evaluated for some average or representative value,
spatial integrations being performed over some representative configuration. It can be seen from
eqn (26) that if the solution is known at time to it can be marched forward to obtain the solution at
to +~t, however it should be noted that since Q, E, C), m, ii may all contain average quantities it
may be necessary to solve eqns (26) iteratively for each time step.

The parameter ~ corresponds to the approximation

In order to ensure stability of the marching process it is necessary to choose ~ ;;;. H13].

4. EXAMPLES

Both one and two-dimensional examples are presented to illustrate the theory. In all cases the
soil is an isotropic, elastic two phase continuum. It is assumed uniform and homogeneous with
regard to both deformation and flow properties. In all cases gravity acts in the direction of the
applied load.
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For the plane strain case the matrix D of eqn (18) is taken as

[

A+20 A 0]
D= A A+20 0

000
(27)

where A and 0 are the Lame parameters of the classical theory.

4.1 One-dimensional finite consolidation
The problem of one-dimensional consolidation is analysed for the situation in which the

traction q is applied instantaneously to the soil surface at t = 0 and thereafter held constant and
drainage occurs only at this surface. Under these conditions a solution for the settlement as a
function of time t can be seen from eqn (26) to depend upon the following parameters: q/E';
'YtH/E'; p'; eo and Sg where: E' and p' are the drained Young's modulus and Poisson's ratio
respectively for the soil; H is the initial depth of the layer; 'Yt is the unit weight of the pore fluid;
eo is the uniform initial void ratio of the soil; k is the soil permeability; and Sg is the specific
gravity of the solid particles.

For the results presented the following material properties were chosen: eo = 10; p' =0.3;
Sg = 2.65. Figures 2 and 3 show some solutions for the degree of settlement, U as a function of
the parameters q/E' and 'YtH/E' and the dimensionless time T = cvt/H2

, where Cv is the usual one
dimensional consolidation coefficient. The curves indicate that shallow stiff layers exhibit a
consolidation behaviour more like the Terzaghi prediction than do deeper, less stiff layers. For
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any given soil a further departure from the classical behaviour is observed as the magnitude of
the consolidating pressure is increased. Note that to obtain the Terzaghi solution it is necessary
for both of the parameters 'YIH/E' and q/E' to approach zero. Numerical agreement with this
solution is shown in Fig. 3.

4.2 Two-dimensional finite consolidation-a rigid footing
The plane strain problem of the finite consilidation of a rigid, permeable strip footing resting

on the surface of a saturated clay layer is described in the inset to Fig. 4. As with the
one-dimensional problem the solution for the settlement, p with time can be shown to depend
upon, amongst others, the parameters Q/2BG and 'YIB/G. G is the shear modulus for the soil, B is
the footing half width and Q is the total applied load per unit length of footing.

To approximate an instantaneous loading the vertical force on the footing was increased
linearly with time from zero at T ::::; 0 to its ultimate value at T ::::; 0.0001 over a number of steps.
To model a rigid footing the load was applied as a series of nodal forces to several very stiff
(compared to the soil) footing elements.

Some results for the footing settlement p as a function of the dimensionless time factor
T::::; cvt/D2

, where D is the layer depth at t ::::; 0, are given in Fig. 4 for the case 'Yf B/G = 0.1,
Eo = 10 and v' = OJ. The curves show that the settlement behaviour is more unlike the small strain
prediction for larger values of the parameter Q/2BG (i.e. as either the load is increased and/or less
stiff soils are loaded). According to the finite theory a settlement equal to the layer depth would
be approached as Q/2BG approaches an infinite value. This is not the case for infinitesimal theory
where physically impossible settlements are predicted at finite load levels, see for example, the
curve for Q/2BG ::::; 10 of Fig. 4.

Figure 5 shows the configuration of the finite element mesh at various times for the case of
Q/2BG::::; 5. For large values of the parameter Q/2BG severe distortion of elements occurs,
particularly near the edge of the footing. This may render the calculation unrealistic, especially if
the void ratio becomes zero in any element.

100·10-0001 0'001
o ,...------,---,----r------,---.,

2

piS 3

4

6 108

Fig. 4. Two dimensional finite consolidation.
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(0) T =0

(c) T= 0,01 (d) T = 10

Fig. 5. 2- D finite consolidation-mesh geometries.

5. CONCLUSIONS

A consistent formulation for the consolidation of a soil which incorporates the effects due to
significant changes of geometry has been proposed. In developing the theory attention has been
restricted to the case of a soil with an elastic skeleton. However, using the same approach it is
possible to extend this theory to analyse the behaviour of a soil with an inelastic skeleton. In
general, real soil may be modelled as one for which the elastic moduli and soil permeabilities vary
with stress level and void ratio and which includes the possibility of plastic yielding. The
consolidation of a soil with such an inelastic skeleton forms the subject of future work.
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APPENDIX

The penneability matrix
We present here the derivation of matrix K of eqn (19) for the general case of three dimensional consolidation.
Consider an element of soil with centre Po(a, b, c) which deforms from an initial position A at time to to an adjacent

position B with centre P (x, y, z) in a time interval dt, as shown schematically in Fig. 6. Initially the flow properties are
characterised by

so that Dancy's law at A may be written as

(AI)

where ho, ao are the head and porosity in the vicinity of Po respectively, and (V/o - v'o) is the vector of velocity components
(measured with respect to x. Y. z axes) of the fluid phase relative to the solids at Po. The quantity Voho is given by

V ho = (oho oho Oho)T
o oa'ob'oc' (A2)

The question now arises as to the form of Darcy's law when the element of soil is in position B. One reasonable
assumption is that the form of any flow anisotropy is intrinsic to the element so that

a(v,-v:) = - KV'h (A3)

where h. a represent the same quantities as before only measured at P at time to + dt. and

V'h =(~ oh ~)T
o~' 0"/' o{ . (M)

The vector (v,-v:) contains the components of the relative velocity at P but measured with respect to rotated axes (~, ,,/, n.
The relationship between (v; - v:) and (Vi - v,), the relative velocity vector at P measured with respect to (x. y, z), is given by

z

'r/'(/\\;(:,~\5
\ /

\ //

Y
f

/
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x
Fig. 6. Element rotation.
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(AS)

where R is the matrix which corresponds to the appropriate rotation of coordinate axes, (e.g. for plane deformations

R= [C~s l' -sin 1']
sm l' cos l'

where l' is the angle of rotation between (x. y) and (t.1/».
Considering (x. Y. z) as the independent variables then

V'h=RVH

where

Equation (A3) may thus be transformed to give Darcy's law at B in the form

where

(A6)

(A7)

Kthus remains symmetric during the rotation. It is interesting to note that. according to the above assumption. as an element
rotates the form of Darcy's law (referred to the initial set of axes) changes. Thus a material which is anisotropic. but whose
initial anisotropy is homogeneous develops an inhomogeneity of anisotropy as different elements rotate by different amounts.
Of course this does not occur (according to this formulation) if the material is initially isotropic and in such a case

(A8)

where k is the isotropic permeability.


